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Abstract. We study the geometric phase of an open two-level quantum system under the influence of
a squeezed, thermal environment for both non-dissipative as well as dissipative system-environment in-
teractions. In the non-dissipative case, squeezing is found to have a similar influence as temperature, of
suppressing geometric phase, while in the dissipative case, squeezing tends to counteract the suppressive
influence of temperature in certain regimes. Thus, an interesting feature that emerges from our work is the
contrast in the interplay between squeezing and thermal effects in non-dissipative and dissipative interac-
tions. This can be useful for the practical implementation of geometric quantum information processing.
By interpreting the open quantum effects as noisy channels, we make the connection between geometric
phase and quantum noise processes familiar from quantum information theory.

PACS. 03.65.Vf Phases: geometric; dynamic or topological – 03.65.Yz Decoherence; open systems; quan-
tum statistical methods – 03.67.Lx Quantum computation

1 Introduction

Geometric Phase (GP) brings about an interesting and im-
portant connection between phase and the intrinsic cur-
vature of the underlying Hilbert space. In the classical
context it was introduced by Pancharatnam [1], who de-
fined a phase characterizing the interference of classical
light in distinct states of polarization. Its quantum coun-
terpart was discovered by Berry [2] for the case of cyclic
adiabatic evolution. Simon [3] showed this to be a conse-
quence of the holonomy in a line bundle over parameter
space thus establishing the geometric nature of the phase.
Generalization of Berry’s work to non-adibatic evolution
was carried out by Aharonov and Anandan [4] and to the
case of non-cyclic evolution by Samuel and Bhandari [5],
who by extending Pancharatnam’s ideas for the interfer-
ence of polarized light to quantum mechanics were able
to make a comparison of the phase between any two non-
orthogonal vectors in the Hilbert space. An important de-
velopment was carried out by Mukunda and Simon [6],
who, making use of the fact that GP is a consequence of
quantum kinematics, and is thus independent of the de-
tailed nature of the dynamics in state space, formulated a
quantum kinematic version of GP.

Uhlmann was the first to extend GP to the case of non-
unitary evolution of mixed states, employing the standard
purification of mixed states [7]. Sjöqvist et al. [8] intro-
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duced an alternate definition of geometric phase for nonde-
generate density operators undergoing unitary evolution,
which was extended by Singh et al. [9] to the case of degen-
erate density operators. A kinematic approach to define
GP in mixed states undergoing nonunitary evolution, gen-
eralizing the results of the above two works, has recently
been proposed by Tong et al. [10]. Wang et al. [11,12] de-
fined a GP based on a mapping connecting density matri-
ces representing an open quantum system, with a nonunit
vector ray in complex projective Hilbert space, and ap-
plied it to study the effects of a squeezed-vacuum reservoir
on GP.

The geometric nature of GP provides an inherent fault
tolerance that makes it a useful resource for use in devices
such as a quantum computer [13]. There have been pro-
posals to observe GP in a Bose-Einstein-Josephson junc-
tion [14] and in a superconducting nanostructure [15],
and of using it to control the evolution of the quantum
state [16]. However, in these situations the effect of the
environment is never negligible [17]. Also in the context
of quantum computation, the qubits are never isolated
but under some environmental influence. Hence it is im-
perative to study GP in the context of Open Quantum
Systems. An important step in this direction was taken
by Whitney et al. [18], who carried out an analysis of the
Berry phase in a dissipative environment [19]. Rezakhani
and Zanardi [20] and Lombardo and Villar [21] have also
carried out an open system analysis of GP, where they
were concerned, amongst other things, with the interplay
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between decoherence and GP brought about by thermal
effects from the environment. Sarandy and Lidar [22] have
introduced a self-consistent framework for the analysis of
Abelian and non-Abelian geometric phases for open quan-
tum systems undergoing cyclic adiabatic evolution. The
GP acquired by open bipartite systems has recently been
studied by Yi et al. [23] using the quantum trajectory ap-
proach.

In this paper we make use of the method of Tong et al.
[10] to study the GP of a qubit (a two-level quantum sys-
tem) interacting with different kinds of system-bath (en-
vironment) interactions, one in which there is no energy
exchange between the system and its environment, i.e.,
a quantum non-demolition (QND) interaction and one in
which dissipation takes place [24,25]. Throughout, we as-
sume the bath to start in a squeezed thermal initial state,
i.e., we deal with a squeezed thermal bath. The physi-
cal significance of squeezed thermal bath is that the de-
cay rate of quantum coherences in phase-sensitive (i.e.,
squeezed) baths can be significantly modified compared
to the decay rate in ordinary (phase-insensitive) thermal
baths [26–28]. A method to generate GP by making use
of a squeezed vacuum bath has recently been proposed by
Carollo et al. [29].

The open system effects studied below can be given an
operator-sum or Kraus representation [30]. In this repre-
sentation, a superoperator E due to environmental inter-
action, acting on the state of the system is given by

ρ −→ E(ρ) =
∑

k

〈ek|U(ρ⊗ |f0〉〈f0|)U †|ek〉 =
∑

j

EjρE
†
j ,

(1)
where U is the unitary operator representing the free evo-
lution of the system, reservoir, as well as the interaction
between the two, {|f0〉} is the environment’s initial state,
and {|ek〉} is a basis for the environment. The environ-
ment and the system are assumed to start in a separa-
ble state. In the above equation, Ej ≡ 〈ek|U |f0〉 are the
Kraus operators, which satisfy the completeness condition∑

j E
†
jEj = I. The operator sum representation is not

unique. Every (infinitely many) possible choice of tracing
basis {|ek〉} in equation (1) yields a different, but equiv-
alent and unitarily related, set of Kraus operators. It can
be shown that any transformation that can be cast in the
form (1) is a completely positive (CP) map [31].

From the viewpoint of quantum communication, these
open quantum system effects correspond to noisy quan-
tum channels, and are recast in the Kraus representation.
We find that some of them may be interpreted in terms
of familiar noisy quantum channels. This abstraction will
enable us to connect noisy channels directly to their effect
on GP, bypassing system-specific details. Visualizing the
effect of these channels on GP in a Bloch vector picture of
these open system effects helps to interpret our GP results
in a simple fashion.

The structure of the paper is as follows. In Section 2,
we briefly discuss QND open quantum systems and collect
some formulas which would be of use later. In Section 3,
we study the GP of a two-level system in QND interac-

tion with its bath. Here we consider two different kinds of
baths. In Section 3.1, a bath of harmonic oscillators is con-
sidered, and we also briefly touch upon a bath of two-level
systems. In Section 3.2, we point out that the GP results
obtained in this section are generic for any purely dephas-
ing channel. In Section 4, we study the GP of a two-level
system in a dissipative bath. Section 4.1 considers the sys-
tem interacting with a bath of harmonic oscillators in the
weak Born-Markov, rotating-wave approximation (RWA).
In Section 4.2, we point out that the GP results obtained
in this section are generic for any squeezed generalized am-
plitude damping channel [32], of which the familiar gen-
eralized amplitude damping channel [31] is a special case.
We make our conclusions in Section 5.

2 QND open quantum systems –
A recapitulation

To illustrate the concept of QND open quantum systems
we use the percept of a system interacting with a bath of
harmonic oscillators. Such a model, for a two-level atom,
has been studied [33–35] in the context of influence of
decoherence in quantum computation. We will consider
the following Hamiltonian which models the interaction
of a system with its environment, modelled as a bath of
harmonic oscillators, via a QND type of coupling [28]

H = HS +HR +HSR

= HS +
∑

k

�ωkb
†
kbk +HS

∑

k

gk(bk + b†k)

+H2
S

∑

k

g2
k

�ωk
. (2)

Here HS , HR and HSR stand for the Hamiltonians of the
system (S), reservoir (R) and system-reservoir (S-R) in-
teraction, respectively. The last term on the right-hand
side of equation (1) is a renormalization inducing ‘counter
term’. Since [HS , HSR] = 0, (1) is of QND type. Here
HS is a generic system Hamiltonian which we will use in
the subsequent sections to model different physical situa-
tions. The system plus reservoir complex is closed obeying
a unitary evolution given by

ρ(t) = e−
i
�

Htρ(0)e
i
�

Ht, (3)

where ρ(0) = ρs(0)ρR(0), i.e., we assume separable initial
conditions. Here we assume the reservoir to be initially in
a squeezed thermal state, i.e., a squeezed thermal bath,
with an initial density matrix ρR(0) given by

ρR(0) = S(r, Φ)ρthS
†(r, Φ), (4)

where ρth =
∏

k

[
1 − e−β�ωk

]
exp

(
−β�ωkb

†
kbk

)
is the

density matrix of the thermal bath, and

S(rk, Φk) = exp

[
rk

(
b2k
2
e−i2Φk − b†2k

2
ei2Φk

)]
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is the squeezing operator with rk, Φk being the squeezing
parameters [36]. In an open system analysis we are inter-
ested in the reduced dynamics of the system of interest
S which is obtained by tracing over the bath degrees of
freedom. Using equations (2) and (3) and tracing over the
bath we obtain the reduced density matrix for S, in the
system eigenbasis, as [28]

ρs
nm(t) = e−

i
�
(En−Em)tei(E2

n−E2
m)η(t)e−(En−Em)2γ(t)ρs

nm(0).
(5)

Here

η(t) = −
∑

k

g2
k

�2ω2
k

sin(ωkt), (6)

and

γ(t) =
1
2

∑

k

g2
k

�2ω2
k

coth
(
β�ωk

2

)∣∣(eiωkt − 1) cosh(rk)

+ (e−iωkt − 1) sinh(rk)ei2Φk
∣∣2 . (7)

For the case of an Ohmic bath with spectral density
I(ω) = γ0

π ωe
−ω/ωc , where γ0 and ωc are two bath param-

eters, η(t) and γ(t) have been evaluated in [28], where we
have for simplicity taken the squeezed bath parameters as

cosh (2r(ω)) = cosh(2r), sinh (2r(ω)) = sinh(2r),
Φ(ω) = aω,

with a being a constant depending upon the squeezed
bath. We will make use of equations (6) and (7) in the
subsequent analysis (cf. Ref. [28] for details). Note that
the results pertaining to a thermal bath can be obtained
from the above equations by setting the squeezing param-
eters r and Φ (i.e., a) to zero.

3 GP of two-level system in QND interaction
with bath

In this section we study the GP of a two-level system in
QND interaction with its environment (bath). We consider
two classes of baths, one being the commonly used bath of
harmonic oscillators [21], and the other being a localized
bath of two-level systems.

3.1 Bath of harmonic oscillators

The total Hamiltonian of the S + R complex has the
same form as in equation (2) with the system Hamilto-
nian HS = �ω

2 σ3, where σ3 is the usual Pauli matrix. We
will be interested in obtaining the reduced dynamics of
the system. This is done by studying the reduced den-
sity matrix of the system whose structure in the system
eigenbasis is as in equation (5). For the system described
by HS an appropriate eigenbasis is given by the Wigner-
Dicke states [37–39] |j,m〉, which are the simultaneous
eigenstates of the angular momentum operators J2 and
JZ , and we have HS |j,m〉 = �ωm|j,m〉 = Ej,m|j,m〉.

Here −j ≤ m ≤ j. For the two-level system considered
here, j = 1

2 and hence m = − 1
2 ,

1
2 . Using this basis in

equation (5) we obtain the reduced density matrix of the
system as

ρs
jm,jn(t) = e−iω(m−n)tei(�ω)2(m2−n2)η(t)

× e−(�ω)2(m−n)2γ(t)ρs
jm,jn(0). (8)

It follows from equation (8) that the diagonal elements
of the reduced density matrix signifying the population
remain unaffected by the environment whereas the off-
diagonal elements decay. This is a feature of the QND
nature of the system-environment coupling. Initially we
choose the system to be in the state

|ψ(0)〉 = cos
(
θ0
2

)
|1〉 + eiφ0 sin

(
θ0
2

)
|0〉. (9)

Using this we can write equation (8) as

ρs
j0,j0(t) = cos2

(
θ0
2

)

ρs
j0,j1(t) =

1
2

sin(θ0)e−i(ωt+φ0)e−(�ω)2γ(t)

ρs
j1,j0(t) =

1
2

sin(θ0)ei(ωt+φ0)e−(�ω)2γ(t)

ρs
j1,j1(t) = sin2

(
θ0
2

)
. (10)

We will make use of equation (10) to obtain the GP of
the above open system using the prescription of Tong
et al. [10]

ΦGP = arg

(
N∑

k=1

√
λk(0)λk(τ)〈Ψk(0)|Ψk(τ)〉

× e−
∫ τ
0 dt〈Ψk(t)|Ψ̇k(t)〉

)
. (11)

Hereafter we will consider for GP a quasi-cyclic path
where time (t) varies from 0 to τ = 2π/ω, ω being the
system frequency. In the above equation the overhead dot
refers to derivative with respect to time and λk(τ), Ψk(τ)
refer to the eigenvalues and the corresponding eigenvec-
tors, respectively, of the reduced density matrix given here
by equation (10). The eigenvalues of equation (10) are

λ±(t) =
1
2

[1 + cos(θ0)ε±(t)] , (12)

where ε±(t) = ±
√

1 + tan2(θ0)e−2(�ω)2γ(t). Since γ(t) = 0
for t = 0, we can see from the above equations that
λ+(0) = 1 and λ−(0) = 0. From the structure of equa-
tion (11) we see that only the eigenvalue λ+ and its corre-
sponding eigenvector |Ψ+〉 need be considered for the GP.
This normalized eigenvector is found to be

|Ψ+(t)〉 = sin
(
θt

2

)
|1〉 + ei(ωt+φ0) cos

(
θt

2

)
|0〉, (13)
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Fig. 1. GP (Eq. (14)) as a function of θ0 (in radians) for
different temperatures and squeezing at γ0 = 0.0025. In both
plots, unitary evolution is depicted by the large-dashed curve.
(A) GP at r = a = 0.0; the dot-dashed, small-dashed and
solid curves correspond, respectively, to temperatures 50, 100,
300. (B) GP at T = 100 and a = 0; the dot-dashed, small-
dashed and solid curves correspond, respectively, to squeezing
parameter r = 0, 0.4, 0.6. For QND interactions, in the region
π/2 < θ0 ≤ π, the pattern is symmetric but sign reversed.
Observe that, as is true for all QND cases, GP vanishes at
θ0 = 0. This can be attributed to the fact that the qubit’s
evolution sweeps no solid angle in this case. Here, as in all
other figures, we take ω = 1, and for all figures in this section,
ωc = 40ω.

where sin (θt/2) =
√

ε++1
2ε+

. It can be seen that for t = 0,

sin
(

θt

2

) → cos
(

θ0
2

)
and cos

(
θt

2

) → sin
(

θ0
2

)
, as expected.

Now we make use of equations (12) and (13) in equa-
tion (11) to obtain GP as

ΦGP = arg
[{1

2

(
1+cos(θ0)

√
1+tan2(θ0)e−2(�ω)2γ(τ)

)} 1
2

×
{

cos(
θ0
2

) sin
(
θτ

2

)
+ eiωτ sin

(
θ0
2

)
cos(

θτ

2
)
}

× e−iω
∫

τ
0 dt cos2(

θt
2 )

]
. (14)

Here γ(t) is as given in reference [28] for a zero tempera-
ture (T ) bath or high T bath. It can be easily seen from
equation (14) that if we set the influence of the environ-
ment, encapsulated here by the expression γ(t), to zero,
we obtain for τ = 2π

ω , ΦGP = −Ω/2 = −π(1 − cos(θ0)),
where Ω is solid angle subtended by the tip of the Bloch
vector on the Bloch sphere, which is the standard result

200 400 600 800 1000
T

-0.2

-0.15

-0.1

-0.05

GP �A�

200 400 600 800 1000
T

-0.14

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

GP �B�

Fig. 2. GP (in radians) as a function of temperature (T , in
units where � ≡ kB ≡ 1) for QND interaction with a bath
of harmonic oscillators (Eq. (14)). (A) with γ0 = 0.005 and
vanishing squeezing. The solid, dashed and larger-dashed lines
correspond to θ0 = π/8, 3π/16 and π/4. (B) Same as (A),
except that here squeezing is non-vanishing, with r = 0.7 and
a = 0.1.

for the unitary evolution of an initial pure state. More gen-
erally, unitary evolution of mixed states also has a simple
relation to the solid angle, given by

ΦGP = − tan−1

(
L tan

Ω

2

)
, (15)

where L is the length of the Bloch vector [8,9].
The effect of temperature and squeezing on GP is

brought out by Figures 1 and 2. From Figures 1A and 1B,
we see, respectively, that increasing the temperature and
squeezing induce a departure from unitary behavior by
suppressing GP, except at polar angles θ0 = 0, π/2 of the
Bloch sphere. It can be shown that, similarly, increase
in the S-R coupling strength, modelled by γ0, also tends
to suppress GP. (Throughout this article, the figures use
ω = 1. Further, figures in this section use ωc = 40ω.) The
suppressive influence of temperature on GP is also seen
in Figure 2, where temperature is varied for fixed θ0 and
squeezing. A similar suppressive influence of squeezing on
GP is brought out by comparing Figures 2A and 2B. These
observations are easily interpreted in the Bloch vector pic-
ture, as we discuss later in this section.

Another interesting case is that of qubit subjected to
a bath of two-level systems, studied by Shao and collabo-
rators in the context of QND systems [40], and quantum
computation [41]. It has also been used to model a nano-
magnet coupled to nuclear and paramagnetic spins [42]. It
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can be shown [43] that this case is mathematically similar
to that of QND interaction with a vacuum bath of har-
monic oscillators for weak S-R coupling, and hence the
dependence of GP on θ0 and γ0 is similar to the analo-
gous case discussed above.

3.2 Evolution of GP in a phase damping channel

While the results derived above are for QND S-R inter-
actions with two types of baths, they are quite general,
and in fact apply to any open system effect that can be
characterized as a phase damping channel [31]. This is
a uniquely non-classical quantum mechanical noise pro-
cess, describing the loss of quantum information without
the loss of energy. This system can be represented by the
Kraus operator elements

E0 ≡
[

1 0
0 eiβ(t)

√
1 − λ(t)

]
, E1 ≡

[
0 0
0

√
λ(t)

]
, (16)

where β(t) encodes the free evolution of the system and
λ(t) the effect of the environment. It is not difficult to see
that the QND interactions we have considered realize a
phase damping channel.

In the case of QND interaction with a bath of harmonic
oscillators (Sect. 3.1), it is straightforward to verify that
with the identification

λ(t) = 1 − exp
[−2(�ω)2γ(t)

]
; β(t) = ωt. (17)

The operators (16) acting on the state (9) reproduce the
evolution equation (10) by means of the map equation (1).
Similarly, the effect of QND interaction with a bath of two
level systems can also be represented as phase damping
channel [43]. Our result is in agreement with that of refer-
ence [11], where GP is shown to depend on the dephasing
parameter, introduced phenomenologically. Our result is
obtained from a microscopic model, governed by equa-
tions (2)–(4), that takes into consideration the interaction
of a qubit with a squeezed thermal bath, the resulting
dynamics being shown above to be equivalent to a phase
damping channel.

In the case of QND interaction, any initial state not lo-
cated on the σ3-axis tends to inspiral towards it, its trajec-
tory remaining coplanar on the x-y plane. Consequently,
the entire Bloch sphere shrinks into a prolate spheroid,
with its axis of symmetry given by the σ3-axis. The extent
of inspiral depends upon the parameter λ(t); the greater
is λ(t), the more is the inspiral. Greater squeezing and
higher temperature accentuate this shrinking.

Guided qualitatively by the relation equation (15) we
may interpret GP as directly dependent on the Bloch vec-
tor length L(t), and the solid angle (Ω) subtended at the
center of the Bloch sphere during a cycle in parameter
space. Increasing T , γ0 or squeezing results in a larger de-
gree of inspiral causing a reduction of both L and Ω, and
hence greater suppression of GP relative to the case of
unitary evolution.

In Figures 1A and 1B, we noted that the GP remains
invariant at polar angles θ0 = 0 and θ0 = π/2. In the

case θ0 = 0, the Bloch vector remains a constant (0, 0, 1)
throughout the evolution and hence accumulates no GP.
In the case θ0 = π/2, note that Ω = 2π. From equa-
tion (15), we see that irrespective of the length of the
Bloch vector, GP should remain the same, i.e., −π. This
suggests that in the general nonunitary case, when the
Bloch vector rotates on the equitorial plane, GP is unaf-
fected by whether or not there is an inspiral of the Bloch
vector.

The fall of GP as a function of T (Figs. 1A and 2) can
be attributed to the fact that as T increases the tip of the
Bloch vector inspirals more rapidly towards the σ3-axis,
and thus sweeps less GP. Squeezing has the same effect
as temperature, of contracting the Bloch sphere along the
σ3-axis, leading to further suppression of GP (Figs. 1B
and 2B).

4 GP of two-level system in non-QND
interaction with bath

In this section we study the GP of a two-level system in a
non-QND interaction with its bath which we take as one
composed of harmonic oscillators. We consider the case of
the system interacting with a bath which is initially in a
squeezed thermal state, in the weak coupling Born-Markov
RWA.

4.1 System interacting with bath in the weak
Born-Markov RWA

Now we take up the case of a two-level system in-
teracting with a squeezed thermal bath in the weak
Born-Markov, rotating wave approximation. This kind of
system-reservoir (S−R) interaction is consonant with the
realization that in order to be able to observe GP, one
should be in a regime where decoherence is not predomi-
nant [18,20]. The system Hamiltonian is HS and it inter-
acts with the bath of harmonic oscillators via the atomic
dipole operator which in the interaction picture is given as

D(t) = dσ−e−iωt + d∗σ+e
iωt, (18)

where d is the transition matrix elements of the dipole
operator. The evolution of the reduced density matrix op-
erator of the system S in the interaction picture has the
following form [44,45]

d

dt
ρs(t) = γ0(N + 1)

×
(
σ−ρs(t)σ+ − 1

2
σ+σ−ρs(t) − 1

2
ρs(t)σ+σ−

)

+γ0N

(
σ+ρ

s(t)σ− − 1
2
σ−σ+ρ

s(t) − 1
2
ρs(t)σ−σ+

)

−γ0Mσ+ρ
s(t)σ+ − γ0M

∗σ−ρs(t)σ−. (19)

Here γ0 is the spontaneous emission rate given by γ0 =
4ω3|d|2/3�c3, and σ+, σ− are the standard raising and
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lowering operators, respectively given by

σ+ = |1〉〈0| =
1
2

(σ1 + iσ2) ; σ− = |0〉〈1| =
1
2

(σ1 − iσ2) .

(20)
Equation (19) may be expressed in a manifestly Lindblad
form as

d

dt
ρs(t) =

2∑

j=1

(
2Rjρ

sR†
j −R†

jRjρ
s − ρsR†

jRj

)
, (21)

where R1 = (γ0(Nth + 1)/2)1/2R, R2 = (γ0Nth/2)1/2R†
and R = σ− cosh(r) + eiΦσ+ sinh(r). This observation
guarantees that the evolution of the density operator can
be given a Kraus or operator-sum representation [31], a
point we return to later below. If T = 0, then R2 van-
ishes, and a single Lindblad operator suffices to describe
equation (19).

In the above equation we use the nomenclature |1〉 for
the upper state and |0〉 for the lower state and σ1, σ2, σ3

are the standard Pauli matrices. In equation (19)

N = Nth(cosh2(r) + sinh2(r)) + sinh2(r),

M = −1
2

sinh(2r)eiΦ(2Nth + 1),

Nth =
1

e
�ω

kB T − 1
. (22)

Here Nth is the Planck distribution giving the number of
thermal photons at the frequency ω and r, Φ are squeezing
parameters. The analogous case of a thermal bath without
squeezing can be obtained from the above expressions by
setting these squeezing parameters to zero. We solve equa-
tion (19) using the Bloch vector formalism to obtain the
reduced density matrix of the system in the Schrödinger
picture as [43]

ρs(t) =

(
1
2 (1 +A) Be−iωt

B∗eiωt 1
2 (1 −A)

)
, (23)

where,

A ≡ 〈σ3(t)〉 = e−γ0(2N+1)t〈σ3(0)〉
− 1

(2N + 1)

(
1 − e−γ0(2N+1)t

)
, (24)

B =
[
1 +

1
2

(
eγ0at − 1

)]
e−

γ0
2 (2N+1+a)t〈σ−(0)〉

+ sinh(
γ0at

2
)eiΦ− γ0

2 (2N+1)t〈σ+(0)〉. (25)

Here a = sinh(2r)(2Nth +1). Making use of equation (20),
equation (25) can be written as B = Re−iχ. The explicit
expressions for R and χ may be found in reference [43].
For the determination of GP we need the eigenvalues and
eigenvectors of equation (23). The eigenvalues are

λ±(t) =
1
2

(1 + ε±) , (26)

where ε± = ±√
A2 + 4R2. As can be seen from the above

expressions, at t = 0, λ+(0) = 1 and λ−(0) = 0, hence for
the purpose of GP we need only the eigenvalue λ+(t), and
its corresponding normalized eigenvector is given as

|Ψ+(t)〉 = sin
(
θt

2

)
|1〉 + ei(χ(t)+ωt) cos

(
θt

2

)
|0〉, (27)

where sin (θt/2) = 2R√
4R2+(ε+−A)2

=
√

ε++A
2ε+

. It can be

seen that for t = 0, χ(0) = φ0, sin
(

θt

2

)
=

√
1+〈σ3(0)〉

2 ≡
cos

(
θ0
2

)
and cos

(
θt

2

)
=

√
1−〈σ3(0)〉

2 ≡ sin
(

θ0
2

)
, as ex-

pected. Now we make use of equations (26), (27) in equa-
tion (11) to obtain GP as

ΦGP = arg

[{
1
2

(
1 +

√
A2(τ) + 4R2(τ)

)} 1
2

×
{

cos
(
θ0
2

)
sin

(
θτ

2

)

+ ei(χ(τ)−χ(0)+ωτ) sin
(
θ0
2

)
cos

(
θτ

2

)}

× e−i
∫

τ
0 dt(χ̇(t)+ω) cos2(

θt
2 )

]
. (28)

It can be easily seen from equation (28) that if we set
the influence of the environment, encapsulated here by
the terms γ0, a and Φ, to zero, we obtain for τ = 2π

ω ,
ΦGP = −π(1−cos(θ0)), as expected, which is the standard
result for the unitary evolution of an initial pure state [8,
9]. Thus we see that though equations (14), (28) represent
the GP of a two-level system interacting with different
kinds of S-R interactions, when the environmental effects
are set to zero they yield identical results. This is a nice
consistency check for these expressions.

As expected, increasing the temperature, S−R cou-
pling strength or squeezing induces a departure of GP
from unitary behavior. However the interpretation is less
straightforward than in the QND case. Further, introduc-
tion of squeezing complicates this pattern by disrupting
the monotonicity of the GP plots, as evident from the
‘humps’ seen for example in Figure 3B, in comparison with
those in Figure 3A.

In all cases, we find that GP vanishes at θ0 = π, i.e.,
for a system that starts in the south pole of the Bloch
sphere. On the other hand, for sufficiently small γ0, we
find from Figures 3A and 3B that GP may vanish also in
the case θ0 = 0. These observations may be interpreted in
the Bloch vector picture, and are discussed in Section 4.2.

In contrast to the situation in a purely dephasing sys-
tem, GP in a dissipative system is rather complicated,
and less amenable to interpretation. The dependence of
GP on temperature is depicted in Figures 4 and 5. The
expected pattern of GP falling asymptotically with tem-
perature is seen. Our results parallel those obtained in
references [20,46] for the case of zero squeezing (Figs. 4A
and 5A), and extend them to the case of a squeezed ther-
mal environment. We note that the effect of squeezing is to
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Fig. 3. GP as a function of θ0 (in radians) for different val-
ues of γ0 and squeezing in the Born-Markov approximation
(Eq. (28)). The discontinuity in GP after π is due to the con-
vention that an angle in the third quandrant is treated as
negative. (A) T = 0. The large-dashed curve is the unitary
case (γ0 = 0). The dot-dashed (small-dashed) curve represents
γ0 = 0.1 (γ0 = 0.3). The solid curve represents γ0 = 0.6. The
stationary state, for which GP vanishes, corresponds to θ0 = π
(i.e., |0〉), to which all states in the Bloch sphere are asymp-
totically driven. Thus, a qubit started in this state remains
stationary and acquires no GP. (B) Same as (A), except that
squeezing r = 0.4, Φ = π/4.

make GP vary more slowly with temperature, by broad-
ening the peak and fattening the tails of the plots. This
counteractive behavior of squeezing on the influence of
temperature on GP for the case of a dissipative system
is interesting, and would be of use in practical implemen-
tation of geometric phase gates. This effect can be un-
derstood by visualizing the effects of squeezing and tem-
perature on the Bloch sphere, a point we return to in
Section 4.2.

4.2 Evolution of GP in a squeezed generalized
amplitude damping channel

While the results derived in this section pertain to a dis-
sipative S-R interaction in the Born-Markov RWA, they
are quite general, and are applicable to any open system
effect that can be characterized as a squeezed general-
ized amplitude damping channel [32]. Amplitude damping
channels capture the idea of energy dissipation from a sys-
tem, for example, in the spontaneous emission of a photon,
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Fig. 4. GP (in radians) vs. temperature (T , in units where
� ≡ kB ≡ 1) from equation (28). Here ω = 1.0, θ0 = π/2,
the large-dashed, dot-dashed, small-dashed and solid curves,
represent, respectively, γ0 = 0.005, 0.01, 0.03 and 0.05; (A)
squeezing is set to zero, (B) squeezing non-vanishing, with r =
0.4 and Φ = 0.

or when a spin system at high temperature approaches
equilibrium with its environment. A simple model of an
amplitude damping channel is the scattering of a photon
via a beam-splitter. One of the output modes is the envi-
ronment, which is traced out. The unitary transformation
at the beam-splitter is given by B = exp

[
θ(a†b− ab†)

]
,

where a, b and a†, b† are the annihilation and creation op-
erators for photons in the two modes. The generalized
amplitude damping channel, with T ≥ 0 and with zero
squeezing, extends the amplitude damping channel to fi-
nite temperature [31]. A very general CP map generated
by equation (19) has been recently obtained by us [32],
and could be appropriately called the squeezed general-
ized amplitude damping channel. This extends the gener-
alized amplitude damping channel by allowing for finite
bath squeezing. It is characterized by the Kraus opera-
tors [32]

E0 ≡ √
p1

[√
1 − α(t) 0

0 1

]
,

E1 ≡ √
p1

[
0 0√
α(t) 0

]
,

E2 ≡ √
p2

[√
1 − µ(t) 0

0
√

1 − ν(t)

]
,

E3 ≡ √
p2

[
0

√
ν(t)√

µ(t)e−iΦ 0

]
. (29)
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Fig. 5. GP vs. temperature (T , in units where � ≡ kB ≡ 1)
from equation (28). Here ω = 1.0, θ0 = π/2 + π/4. The curves
represent γ0 = 0.005, 0.01, 0.03 and 0.05 as in Figure 4; (A)
squeezing is set to zero, (B) squeezing non-vanishing, with r =
0.4 and Φ = 0.

With some algebraic manipulation, it can be verified that
with the identification

ν(t) =
N

p2(2N + 1)
(1 − e−γ0(2N+1)t),

µ(t) =
2N + 1
2p2N

sinh2(γ0at/2)
sinh(γ0(2N + 1)t/2)

× exp
(
−γ0

2
(2N + 1)t

)
,

α(t) =
1
p1

(
1 − p2[µ(t) + ν(t)] − e−γ0(2N+1)t

)
, (30)

where N is as in equation (22), the operators (29) acting
on the state (9) reproduce the evolution (23), by means of
the map equation (1), provided p2 = 1 − p1, satisfies

p2 =
1

(A+B − C − 1)2 − 4D
× [

A2B + C2 +A(B2 − C −B(1 + C) −D)

− (1 +B)D − C(B +D − 1)
± 2 (D(B −AB + (A− 1)C +D)

× (A−AB + (B − 1)C +D))1/2
]
, (31)

where

A =
2N + 1

2N
sinh2(γ0at/2)

sinh(γ0(2N + 1)t/2)
exp (−γ0(2N + 1)t/2) ,

B =
N

2N + 1
(1 − exp(−γ0(2N + 1)t)),

C = A+B + exp(−γ0(2N + 1)t),

D = cosh2(γ0at/2) exp(−γ0(2N + 1)t). (32)

As the interaction in the Born-Markov RWA realizes a
squeezed generalized amplitude damping channel [32], the
various qualitative features of GP seen under a dissipa-
tive interaction (for example, the relatively complicated
dependence of GP on θ0, and on evolution time) carry over
to any squeezed generalized amplitude damping channel.
If squeezing parameter r is set to zero, it can be seen from
above that equation (29) reduces to a generalized ampli-
tude damping channel, with ν(t) = α(t), µ(t) = 0 and p1

and p2 being time-independent. If further T = 0, it can
be seen from above that p2 = 0, reducing equation (29)
to two Kraus operators, corresponding to an amplitude
damping channel.

References [11,12] consider GP evolving under an am-
plitude damping channel and a squeezed amplitude damp-
ing channel, respectively. These are subsumed under the
squeezed generalized amplitude damping channel consid-
ered above. This channel is contractive, in that the system
is seen to evolve towards a fixed asymptotic point in the
Bloch sphere, which in general is not a pure state, but the
mixture

ρasymp =
(

1 − q 0
0 q

)
, (33)

where q = (N + 1)/(2N + 1). If T = r = 0, then q = 1,
and the asymptotic state is the pure state |0〉. Physically
this can be understood as a system going to its ground
state by equilibrating with a vacuum bath, This can have a
practical application in quantum computation in the form
of a quantum deleter [47]. At T = ∞, p = 1/2, and the
system tends to a maximally mixed state, thereby realizing
a fully depolarizing channel [31].

As in the case of the QND interaction, abstracting the
effect of dissipative interaction into the Kraus represen-
tation allows us to subsume all the details of the system
into a limited number of channel parameters p1(t), Φ, α(t),
µ(t) and ν(t). Any other dissipative system that can be
described by a Lindblad-type master equation (19) will
show a similar pattern in behavior.

To develop physical insight into the solution, we trans-
form to the interaction picture, and for simplicity, set the
squeezing parameters to zero. Then, the action of the oper-
ators (29), [which now represents a generalized amplitude
channel] on an arbitrary qubit state is given in the Bloch
vector representation by

〈σ(t)〉 = (〈σ1(0)〉
√

1 − λ(t), 〈σ2(0)〉
√

1 − λ(t),
λ(t)(1 − 2p) + 〈σ3(0)〉(1 − λ(t))), (34)

where p = (Nth + 1)/(2Nth + 1) and λ(t = ∞) = 1. Thus,
the Bloch sphere contracts towards the asymptotic mixed
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Fig. 6. Shrinking of the full Bloch sphere into an oblate
spheroid under evolution given by a Born-Markov type of dis-
sipative interaction with γ0 = 0.6 and temperature T = 5.0.
In (B), the x-y axes are interchanged for convenience. (A)
r = Φ = 0, t = 0.15; (B) r = 0.4, Φ = 1.5, t = 0.15. Finite
Φ is responsible for the tilt.

state (0, 0, 1−2p) (Fig. 6A), characteristic of a generalized
amplitude damping channel, with T ≥ 0 and no squeez-
ing. If T = 0 case, then p = 1, and the asymptotic state
(0, 0,−1) is pure.

The Bloch vector picture allows us to interpret the re-
sults of Section 4.1. Equations (23), show that the Bloch
vector for the states corresponding to θ0 = 0, π move only
along the z-axis of the Bloch sphere for zero as well as
finite T . For the case θ0 = π and zero T , the Bloch vec-
tor remains stationary at (0, 0,−1), and hence GP van-
ishes. In the finite T case, GP still vanishes, because the
Bloch vector has the form (0, 0,−L(t)), where the Bloch
vector length L(t) shrinks from 1 towards an interaction-
dependent asymptotic value, which is zero for infinite tem-
perature or finite otherwise. Since the Bloch vector shrinks
strictly along its length, and thus subtends no finite angle
at the center of the sphere, we find that GP vanishes at
θ0 = π, as expected (cf. Figs. 3).

On the other hand, even though the Bloch vector
shrinks similarly along its length in the case θ0 = 0, we
find that GP is non-vanishing in certain cases, in fact, in
precisely those cases where the tip of the Bloch vector
crosses the center of the Bloch sphere moving along the
σ3-axis. That is, they correspond to the situation where
〈σ3(t)〉 changes sign from positive to negative during the
period of one cycle. In these cases, the dependence of GP
on the Bloch vector is too involved for us to interpret in
terms of L and the angle subtended by the Bloch vector,
for some qualitative insight. Nevertheless this feature may

be formally understood as follows. It can be observed from
equation (24) that for sufficiently large γ0, 〈σ3(t)〉 changes
sign at t1 ≡ log(2[N + 1])/(γ0[2N + 1]). Further, we note
that R vanishes for θ0 = 0 (as well as θ0 = π).

It is convenient to recast equation (28) in the expanded
form

ΦGP = tan−1 [(sin(χ(τ) − χ(0) + 2π) sin(θ0/2) cos(θτ/2))
÷ {cos(χ(τ) − χ(0) + 2π) sin(θ0/2) cos(θτ/2)
+ cos(θ0/2) sin(θτ/2)}]

−
∫ τ

0

dt(χ̇(t) + ω) cos2
(
θt

2

)
. (35)

It can be seen that for the case θ0 = π, cos(θt/2) = 1 and,
in particular, cos(θτ/2) = 1. Substituting these values in
equation (35), it is seen that GP vanishes because the
two terms in the RHS of equation (35) cancel each other.
Next consider the case where θ0 = 0 but where γ0 is suffi-
ciently weak that τ ≤ t1, i.e., 〈σ3(t)〉 does not change sign
during one cycle. In this case, from above it is seen that
cos(θt/2) = 0, and, in particular, cos(θτ/2) = 0, and thus
the terms in the RHS of equation (35) vanish identically.
But in the case of θ0 = 0 where τ > t1 (γ0 being relatively
stronger), cos(θt/2) = 0 initially in the time interval [0, t1],
and then switches to 1 in the interval (t1, τ ]. In particular,
cos(θτ/2) = 1. Observe that if cos(θt/2) = 1 throughout
the interval [0, τ ], the two terms in the RHS cancel each
other. It follows that GP is non-vanishing because of an
excess contributed by the first term, in the interval [0, t1].

Contraction produced by an increase in temperature
tends to be less pronounced in the presence (than in the
absence) of squeezing (Figs. 6). This is reflected in the
slower variation of GP with respect to temperature, seen
in Figures 4B and 5B in relation to Figures 4A and 5A,
respectively. As observed in Figures 4 and 5, GP falls as
a function of T , for sufficiently large T . This may quite
generally be attributed to the reduction in L and Ω caused
by the contraction of Bloch vector as a result of interaction
with the environment. The tilt of the contracted Bloch
sphere in Figure 6B is due to finite Φ.

5 Conclusions

We have studied the combined influence of squeezing and
temperature on the GP for a qubit interacting with a bath
both in a non-dissipative as well as in a dissipative man-
ner. In the former case, squeezing has a similar debilitat-
ing effect as temperature on GP. In contrast, in the latter
case, squeezing can counteract the effect of temperature
in some regimes. This makes squeezing potentially helpful
for geometric quantum information processing and geo-
metric computation. In particular, in the context of using
engineered (e.g., squeezed) reservoirs to generate GP [29],
it would be helpful to consider the effect of squeezing to-
gether with thermal effects [20,21].

In the non-dissipative (QND) case, we analyzed a num-
ber of open system models using two types of bath: the
usual one of harmonic oscillators, and that of two-level
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systems. It was shown that for the case of weak S−R cou-
pling, the two kinds of baths can be mapped onto each
other. GP was studied as a function of the initial polar
angle θ0 of the Bloch sphere, temperature and squeez-
ing (arising from the squeezed thermal bath). In the QND
case, it was seen that increasing γ0, temperature or squeez-
ing tends to cause a similar departure from unitary behav-
ior by suppressing GP.

However, in the dissipative case (with the environment
modelled as a squeezed thermal bath in the weak Born-
Markov RWA), we found that the dependence of GP on
θ0, temperature and squeezing shows a greater complex-
ity. Here, an interesting feature due to squeezing is that
it can disrupt, over an interval, the otherwise monotonic
behavior of GP as a function of θ0 (the humps seen in
Fig. 3B). More pronouncedly, the counteractive effect of
squeezing on temperature is brought out by a comparison
of Figures 4A with 4B, and 5A with 5B. Also, its effect on
the Bloch sphere is to shrink it to an oblate spheroid, in
contrast to a QND interaction, which produces a prolate
spheroid. Thus, an interesting feature that emerges from
our work is the contrast in the interplay between squeez-
ing and thermal effects in non-dissipative and dissipative
interactions. By interpreting the open quantum effects as
noisy channels, we make the connection between geometric
phase and quantum noise processes familiar from quantum
information theory.

An added feature of our work is that we make a con-
nection between the studied open system models and the
phase damping and the newly introduced squeezed gen-
eralized amplitude damping [32] channels, noise processes
which are important from a quantum information theory
perspective. In particular, we give a detailed microscopic
basis for these noisy channels. This allows us to study the
effects of the formal noise processes on GP.
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